Cho ∆ABC nội tiếp đường tròn (O). Gọi D, E, F theo thứ tự là trung điểm của BC, AC, AB. Kẻ các đường thẳng DD' // OA, EE' // OB, FF' // OC. Chứng minh các đường thẳng DD', EE', FF' đồng quy.

Cho ∆ABC nội tiếp đường tròn (O). Gọi D, E, F theo thứ tự là trung điểm của BC, AC, AB. Kẻ các đường thẳng DD' // OA, EE' // OB, FF' // OC. Chứng minh các đường thẳng DD', EE', FF' đồng quy.

Trả lời

Lời giải

Media VietJack

Gọi (Q) là đường thẳng Ơ-le, H là trực tâm, K là trung điểm AH, M là giao AH và BC.

Suy ra M, K, D (Q) 
Gọi P là đầu thứ hai đường kính qua A. 
Suy ra CP // BH (cùng AC), BP // CH (cùng AB)

Nên BPCH là hình bình hành 
Do đó HP cắt BC tại trung điểm BC, tức HP đi qua D OD là đường trung bình của ∆PAH OD = \[\frac{{AH}}{2}\] = AK 
AODK là hình bình hành DK // AO DD' trùng với DK 
Do đó DK là đường kính của (Q), tức DD' đi qua tâm đường thẳng
Euler 

Vậy nên EE', FF' cũng đi qua tâm đường thẳng Euler.

Câu hỏi cùng chủ đề

Xem tất cả