Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O, đường kính BC lần lượt cắt AB, AC tại M và N; BM và CN giao nhau tại H, AH cắt BC tại K. a) Chứng minh: AK ⊥ BC. b) Chứng minh: AM . AB = AN . AC.

Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O, đường kính BC lần lượt cắt AB, AC tại M và N; BM và CN giao nhau tại H, AH cắt BC tại K.

a) Chứng minh: AK BC.

b) Chứng minh: AM . AB = AN . AC.

Trả lời

Lời giải

Media VietJack

a) Do N (O) \(ON = \frac{1}{2}BC\) BN AC;

M (O) \[MO = \frac{1}{2}BC\] MC AB.

H là giao điểm của đường cao

AH BC

AK BC.

b) Xét ∆ANB và ∆AMC có

\[\widehat {BAC}\]là góc chung

\[\widehat {ANB} = \widehat {AMC}\](= 90°)

Do đó ∆ANB ∆AMC (g.g).

Suy ra \[\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\] (các cạnh tương ứng tỉ lệ).

Vậy AM . AB = AN. AC (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả