Cho ∆ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I. a) Tứ giác AMCK là hình gì? b) Tứ giác AKMB là hình gì? c) Có trường hợp nào của ∆

Cho ∆ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì?

b) Tứ giác AKMB là hình gì?

c) Có trường hợp nào của ∆ABC để tứ giác AKMB là hình thoi không? Vì sao?

Trả lời

Lời giải

Media VietJack

a) Áp dụng tính chất của ∆ cân cho DABC ta có: AM  MC và BM = MC

I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK  là hình bình hành.

Lại có MK = AC (= 2MI).

Do đó, tứ giác AMCK là hình chữ nhật.

b) Vì tứ giác AMCK là hình chữ nhật (theo câu a).

Do đó AK // MC và AK = MC = MB.

Vậy tứ giác AKMB là hình bình hành.

c) Nếu tứ giác AKMB là hình thoi thì BA = AK = KM = MB.

 DMBA cân tại B nên \[\widehat {BAM} = \widehat {AMB}\] = 90° (vô lí).

Vậy không có trường hợp nào của DABC để AKMB là hình thoi.

Câu hỏi cùng chủ đề

Xem tất cả