Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC

Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.

Trả lời
Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC (ảnh 1)

Tam giác ABC cân tại A, H là trung điểm của BC nên AH ^ BC.

Ta có: \(\overrightarrow {AM} \,.\,\overrightarrow {BD} = \frac{1}{2}\left( {\overrightarrow {AH} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BH} + \overrightarrow {HD} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AH} \,.\,\overrightarrow {BH} + \overrightarrow {AH} \,.\,\overrightarrow {HD} + \overrightarrow {AD} \,.\,\overrightarrow {BH} + \overrightarrow {AD} \,.\,\overrightarrow {HD} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AH} \,.\,\overrightarrow {HD} + \overrightarrow {AD} \,.\,\overrightarrow {BH} } \right)\) (Do AH ^ BC và HD ^ AC)

\( = \frac{1}{2}\overrightarrow {AH} \,.\,\overrightarrow {HD} + \frac{1}{2}\left( {\overrightarrow {AH} + \overrightarrow {HD} } \right)\overrightarrow {BH} \)

\( = \frac{1}{2}\overrightarrow {AH} \,.\,\overrightarrow {HD} + \frac{1}{2}\overrightarrow {AH} \,.\,\overrightarrow {BH} + \frac{1}{2}\overrightarrow {HD} \,.\,\overrightarrow {BH} \)

\( = \frac{1}{2}\overrightarrow {AH} \,.\,\overrightarrow {HD} + \frac{1}{2}\overrightarrow {HD} \,.\,\overrightarrow {BH} \) (Do AH ^ BC)

\( = \frac{1}{2}\overrightarrow {HD} \left( {\overrightarrow {AH} + \overrightarrow {BH} } \right)\)

\( = \frac{1}{2}\overrightarrow {HD} \left( {\overrightarrow {AH} + \overrightarrow {HC} } \right)\) (Do M là trung điểm của BC)

\( = \frac{1}{2}\overrightarrow {HD} \,.\,\overrightarrow {AC} = 0\)

Vậy AM vuông góc với BD

Câu hỏi cùng chủ đề

Xem tất cả