Cho A(3; 2), B(2; 0), C(5; 0) a) Tìm tọa độ hình chiếu H của A trên đường thẳng BC. b) Gọi I là trung điểm của AC. Tìm điểm M trên cạnh BC sao cho MA +  MI nhỏ nhất.

Cho A(3; 2), B(2; 0), C(5; 0)

a) Tìm tọa độ hình chiếu H của A trên đường thẳng BC.

b) Gọi I là trung điểm của AC. Tìm điểm M trên cạnh BC sao cho MA + MI nhỏ nhất.

Trả lời

Lời giải

a) Ta có \(\overrightarrow {BC} = \left( {3;0} \right)\)

Gọi H(x; y) thuộc đường thẳng BC là hình chiếu của A lên BC

Nên \(\overrightarrow {BH} = k\overrightarrow {BC} \) (với \(\overrightarrow {BH} = \left( {x - 2;y} \right)\))

\( \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3k\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2 - 3k\\y = 0\end{array} \right.\)

Suy ra H(2 – 3k; 0). Khi đó \(\overrightarrow {AH} = \left( { - 1 - 3k; - 2} \right)\).

Vì AH BC nên \(\overrightarrow {AH} .\overrightarrow {BC} = 0\)

(– 1 – 3k).3 + (–2).0 = 0

– 1 – 3k = 0

k = \(\frac{{ - 1}}{3}\)

Suy ra H(3; 0).

b) Vì I là trung điểm AC nên I(4; 1).

Ta có: \(\overrightarrow {BC} = \left( {3;0} \right)\) suy ra \({\overrightarrow n _{BC}} = \left( {0;3} \right)\) nên phương trình BC là:

           0(x – 2) + 3(y – 0) = 0 Û y = 0.

A và I nằm cùng phía so với BC

Gọi I’ là điểm đối xứng I qua BC. Suy ra I’ (4; – 1)

Vì M nằm trên BC nên MI = MI’

Suy ra MI + MA = MI’ + MA

Để MA + MI nhỏ nhất thì MA + MI’ nhỏ nhất

Hay M, A, I’ thẳng hàng

Suy ra M là giao điểm của BC và AI’

Ta có \(\overrightarrow {AI'} = \left( {1; - 3} \right)\)

Suy ra \({\overrightarrow n _{AI'}} = \left( {3;1} \right)\)

Nên ta có phương trình AI’ là:

3(x – 3) + (y – 2) = 0

3x + y – 11 = 0

Với y = 0 ta có \(x = \frac{{11}}{3}\).

Suy ra M\(\left( {\frac{{11}}{3};0} \right)\)

Vậy M\(\left( {\frac{{11}}{3};0} \right)\) thì MA + MI nhỏ nhất.

Câu hỏi cùng chủ đề

Xem tất cả