Cho A = (m; m + 1) ; B = (3; 5) a) Tìm m để A hợp B là một khoảng. Xác định

Cho A = (m; m + 1) ; B = (3; 5)

a) Tìm m để A hợp B là một khoảng. Xác định các khoảng đó.

b) A B ≠ .

c) A B = .

Trả lời

a) Để A hợp B là một khoảng thì

Trường hợp 1: A B, tức (m; m + 1) (3; 5)

\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m\\m + 1 \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 3\\m \le 4\end{array} \right. \Leftrightarrow 3 \le m \le 4 \Leftrightarrow m \in \left[ {3;4} \right]\)

Khi đó A B = (3; 5).

Trường hợp 2: B A, tức (3; 5) (m; m + 1)

\[ \Leftrightarrow \left\{ \begin{array}{l}m \le 3\\5 \le m + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 3\\m \ge 4\end{array} \right.\] (loại)

Do đó không xảy ra trường hợp này.

Khi đó A B = (3; 5).

Trường hợp 3: A B = (m; 5) thì

\[\left\{ \begin{array}{l}m \le 3\\m + 1 > 3\\m + 1 \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 3\\m > 2\\m \le 4\end{array} \right. \Leftrightarrow 2 < m \le 3 \Leftrightarrow m \in \left( {2;3} \right]\]

Trường hợp 4: A B = (3; m +1) thì

\[\left\{ \begin{array}{l}3 \le m\\5 > m\\5 \le m + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 3\\m < 5\\m \ge 4\end{array} \right. \Leftrightarrow 4 \le m < 5 \Leftrightarrow m \in \left[ {4;5} \right)\]

Vậy \[m \in \left( {2;3} \right]\] thì A B = (m; 5);

        \(m \in \left[ {3;4} \right]\) thì A B = (3; 5);

        \[m \in \left[ {4;5} \right)\] thì A B = (3; m +1).

b) A B ≠

\(\left\{ \begin{array}{l}m + 1 > 3\\m < 5\end{array} \right.\)

\(\left\{ \begin{array}{l}m > 2\\m < 5\end{array} \right.\) m (2; 5).

c) A B =

\(\left\{ \begin{array}{l}m + 1 \le 3\\m \ge 5\end{array} \right.\)

\(\left\{ \begin{array}{l}m \le 2\\m \ge 5\end{array} \right.\) m (– ∞; 2] [5; + ∞).

Câu hỏi cùng chủ đề

Xem tất cả