Cho A = (m; m + 1) ; B = (3; 5) a) Tìm m để A hợp B là một khoảng. Xác định
Cho A = (m; m + 1) ; B = (3; 5)
a) Tìm m để A hợp B là một khoảng. Xác định các khoảng đó.
b) A ∩ B ≠ ∅.
c) A ∩ B = ∅.
Cho A = (m; m + 1) ; B = (3; 5)
a) Tìm m để A hợp B là một khoảng. Xác định các khoảng đó.
b) A ∩ B ≠ ∅.
c) A ∩ B = ∅.
a) Để A hợp B là một khoảng thì
Trường hợp 1: A ⊂ B, tức (m; m + 1) ⊂ (3; 5)
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m\\m + 1 \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 3\\m \le 4\end{array} \right. \Leftrightarrow 3 \le m \le 4 \Leftrightarrow m \in \left[ {3;4} \right]\)
Khi đó A ∪ B = (3; 5).
Trường hợp 2: B ⊂ A, tức (3; 5) ⊂ (m; m + 1)
\[ \Leftrightarrow \left\{ \begin{array}{l}m \le 3\\5 \le m + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 3\\m \ge 4\end{array} \right.\] (loại)
Do đó không xảy ra trường hợp này.
Khi đó A ∪ B = (3; 5).
Trường hợp 3: A ∪ B = (m; 5) thì
\[\left\{ \begin{array}{l}m \le 3\\m + 1 > 3\\m + 1 \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 3\\m > 2\\m \le 4\end{array} \right. \Leftrightarrow 2 < m \le 3 \Leftrightarrow m \in \left( {2;3} \right]\]
Trường hợp 4: A ∪ B = (3; m +1) thì
\[\left\{ \begin{array}{l}3 \le m\\5 > m\\5 \le m + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 3\\m < 5\\m \ge 4\end{array} \right. \Leftrightarrow 4 \le m < 5 \Leftrightarrow m \in \left[ {4;5} \right)\]
Vậy \[m \in \left( {2;3} \right]\] thì A ∪ B = (m; 5);
\(m \in \left[ {3;4} \right]\) thì A ∪ B = (3; 5);
\[m \in \left[ {4;5} \right)\] thì A ∪ B = (3; m +1).
b) A ⋂ B ≠ ∅
⇔ \(\left\{ \begin{array}{l}m + 1 > 3\\m < 5\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}m > 2\\m < 5\end{array} \right.\)⇔ m ∈ (2; 5).
c) A ⋂ B = ∅
⇔ \(\left\{ \begin{array}{l}m + 1 \le 3\\m \ge 5\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}m \le 2\\m \ge 5\end{array} \right.\)⇔ m ∈ (– ∞; 2] ∪ [5; + ∞).