Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: a + bc/b + c + b + ca/c + a + c + ab/a + b lớn hơn hoặc bằng 2

Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).

Trả lời

Lời giải

\[\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}}\]

\( = \frac{{a\left( {a + b + c} \right) + bc}}{{b + c}} + \frac{{b\left( {a + b + c} \right) + ca}}{{c + a}} + \frac{{c\left( {a + b + c} \right) + ab}}{{a + b}}\)

\[ = \frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}}\].

Áp dụng BĐT Cô-si ta có:

\(\frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} \ge 2\left( {a + b} \right)\)

Tương tự \(\frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}} \ge 2\left( {b + c} \right)\).

\(\frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}} \ge 2\left( {a + c} \right)\).

Suy ra

\(2\left( {\frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}}} \right) \ge 2\left( {a + b} \right) + 2\left( {b + c} \right) + 2\left( {a + c} \right)\)

\( \Rightarrow \frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}} \ge 2\left( {a + b + c} \right)\)

\( \Rightarrow \frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\left( {a + b + c} \right) = 2\) (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả