Cho a, b, c đôi một khác nhau thỏa mãn a + b/c = b + c/a = c + a/b Tính giá trị của biểu thức P = ( 1 + a/b)( 1 + b/c)( 1 + c/a).

Cho a, b, c đôi một khác nhau thỏa mãn \(\frac{{a + b}}{c} = \frac{{b + c}}{a} = \frac{{c + a}}{b}\)

Tính giá trị của biểu thức \(P = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\).

Trả lời

Lời giải

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{{a + b}}{c} = \frac{{b + c}}{a} = \frac{{c + a}}{b} = \frac{{a + b + b + c + c + a}}{{c + a + b}} = \frac{{2(a + b + c)}}{{(a + b + c)}} = 2\)

\( \Rightarrow \left\{ \begin{array}{l}a + b = 2c\\b + c = 2{\rm{a}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b + c = 2{\rm{a}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b + c = 2(2c - b)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b + c = 4c - 2b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\3b = 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b = c\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = 2c - c\\b = c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = c\\b = c\end{array} \right. \Leftrightarrow a = b = c\)

Khi đó P = (1 + 1). (1 + 1). (1 + 1) = 2. 2. 2 = 8

Vậy P = 8.

Câu hỏi cùng chủ đề

Xem tất cả