Cho a, b, c > 0 và a + b + c = 1. tìm GTLN của a / (a + 1) + b / (b + 1) + c / (c + 1)
Cho a, b, c > 0 và a + b + c = 1. tìm GTLN của \[\frac{a}{{a + 1}} + \frac{b}{{b + 1}} + \frac{c}{{c + 1}}\]
Cho a, b, c > 0 và a + b + c = 1. tìm GTLN của \[\frac{a}{{a + 1}} + \frac{b}{{b + 1}} + \frac{c}{{c + 1}}\]
\[\frac{a}{{a + 1}} + \frac{b}{{b + 1}} + \frac{c}{{c + 1}} = a - \frac{{{a^2}}}{{a + 1}} + b - \frac{{{b^2}}}{{b + 1}} + c - \frac{{{c^2}}}{{c + 1}} = 1 - \left( {\frac{{{a^2}}}{{a + 1}} + \frac{{{b^2}}}{{b + 1}} + \frac{{{c^2}}}{{c + 1}}} \right)\]
Áp dụng bđt Cauchy dạng phân thức \[\frac{{{a^2}}}{{a + 1}} + \frac{{{b^2}}}{{b + 1}} + \frac{{{c^2}}}{{c + 1}} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{a + b + c + 3}} = \frac{1}{{1 + 3}} = \frac{1}{4}\]
\( \to \frac{{{a^2}}}{{a + 1}} + \frac{{{b^2}}}{{b + 1}} + \frac{{{c^2}}}{{c + 1}} \le 1 - \frac{1}{4} = \frac{3}{4}\)
→ GTLN \( = \frac{3}{4}\) Dấu “=” xảy ra khi \(a = b = c = \frac{1}{3}\)