Cho a, b, c > 0 và a + b + c = 1. Chứng minh căn bậc hai (4a + 1) + căn bậc hai (4b + 1)
Cho a, b, c > 0 và a + b + c = 1. Chứng minh \(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} < 5\).
Cho a, b, c > 0 và a + b + c = 1. Chứng minh \(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} < 5\).
Áp dụng BĐT Cô–si cho 3 số không âm ta có:
\(\frac{{4a + 1 + 1}}{2} \ge \sqrt {4a + 1} \Leftrightarrow \frac{{4a + 2}}{2} \ge \sqrt {4a + 1} \Leftrightarrow 2a + 1 \ge \sqrt {4a + 1} \)
Mà a > 0 nên \(2a + 1 > \sqrt {4a + 1} \)
Tương tự với \(\sqrt {4b + 1} \) và \(\sqrt {4c + 1} \) ta có:
\(2b + 1 > \sqrt {4b + 1} ;2c + 1 > \sqrt {4c + 1} \)
\( \Rightarrow \sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} < 2a + 1 + 2b + 1 + 2c + 1\)
\( = 2\left( {a + b + c} \right) + 3 = 2.1 + 3 = 5\).