Cho a + b + c = 0; a^2 + b^2 + c^2 = 2. Tính giá trị của biểu thức: A = a^4 + b^4
Cho a + b + c = 0; a2 + b2 + c2 = 2.
Tính giá trị của biểu thức: A = a4 + b4 + c4.
Cho a + b + c = 0; a2 + b2 + c2 = 2.
Tính giá trị của biểu thức: A = a4 + b4 + c4.
Ta có:
a + b + c = 0
⇒ (a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2ab + 2ac + 2bc = 0
⇒ 1 + 2(ab + ac + bc) = 0
\[ \Rightarrow ab + ac + bc = - \frac{1}{2}\]
\[ \Rightarrow {\left( {ab + ac + bc} \right)^2} = \frac{1}{4}\]
\[ \Rightarrow {a^2}{b^2} + {\rm{ }}{a^2}{c^2} + {\rm{ }}{b^2}{c^2} + {\rm{ }}2{a^2}bc{\rm{ }} + {\rm{ }}2a{b^2}c{\rm{ }} + {\rm{ }}2ab{c^2} = \frac{1}{4}\] \[ \Rightarrow {a^2}{b^2} + {\rm{ }}{a^2}{c^2} + {\rm{ }}{b^2}{c^2} + {\rm{ }}2abc\left( {a{\rm{ }} + {\rm{ }}b{\rm{ }} + {\rm{ }}c} \right) = \frac{1}{4}\]
\[ \Rightarrow {a^2}{b^2} + {\rm{ }}{a^2}{c^2} + {\rm{ }}{b^2}{c^2} = \frac{1}{4}\]
Mà a2 + b2 + c2 = 2
⇒ (a2 + b2 + c2)2 = 4
⇒ a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2 = 4
⇒ a4 + b4 + c4 + 2 (a2b2 + a2c2 + b2c2) = 4
\[ \Rightarrow {a^4} + {\rm{ }}{b^4} + {\rm{ }}{c^4} + {\rm{ }}2.\frac{1}{4} = 4\;\]
\[ \Rightarrow A{\rm{ }} = {\rm{ }}{a^4} + {\rm{ }}{b^4} + {\rm{ }}{c^4} = \frac{7}{2}\]