Cho a, b > 0 thỏa mãn ab = 1. Chứng minh 1/a + 1/b + 2/a + b lớn hơn hoặc bằng 3

Cho a, b > 0 thỏa mãn ab = 1. Chứng minh \(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} \ge 3\).

Trả lời

Lời giải

Ta có:

\(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} = \frac{{a + b}}{{ab}} + \frac{2}{{a + b}}\)

                      \( = \frac{{a + b}}{1} + \frac{2}{{a + b}}\)

                      \( = \frac{{a + b}}{2} + \frac{{a + b}}{2} + \frac{2}{{a + b}}\)

Áp dụng bất đẳng thức Cosi cho hai số \(a > 0,b > 0\) ta có:

\(a + b \ge 2\sqrt {ab} \)

\( \Leftrightarrow \frac{{a + b}}{2} \ge \sqrt {ab} = 1\)

Áp dụng bất đẳng thức Cosi cho hai số \(\frac{{a + b}}{2} > 0\)\(\frac{2}{{a + b}} > 0\), ta có:

\(\frac{{a + b}}{2} + \frac{2}{{a + b}} \ge 2\sqrt {\frac{{a + b}}{2}.\frac{2}{{a + b}}} = 2\sqrt 1 = 2\)

Do đó \(\frac{{a + b}}{2} + \frac{{a + b}}{2} + \frac{2}{{a + b}} \ge 1 + 2 = 3\)

Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}a = b\\\frac{{a + b}}{2} = \frac{2}{{a + b}}\\ab = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b\\{\left( {a + b} \right)^2} = 4\\ab = 1\end{array} \right.\)\( \Leftrightarrow a = b = 1\)

Vậy \(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} \ge 3\).

Câu hỏi cùng chủ đề

Xem tất cả