Cho 5 điểm A, B, C, D, E. Chứng minh rằng: a) vecto AB + vecto CD + vecto EA = vecto CB  + vecto ED. b) vecto AC + vecto CD - vecto EC = vecto AE  - vecto BD  + vecto CB

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Trả lời

Lời giải

a) Ta có:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)

= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)

= \(\overrightarrow {EB} + \overrightarrow {CD} \)

= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)

= \(\overrightarrow {CB} + \overrightarrow {ED} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)

b) Ta có:

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)

= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)

= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)

Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Câu hỏi cùng chủ đề

Xem tất cả