b) Chứng minh MN là tiếp tuyến của đường tròn đường kính BH.
b) Chứng minh MN là tiếp tuyến của đường tròn đường kính BH.
b) Chứng minh MN là tiếp tuyến của đường tròn đường kính BH.
b) Gọi Q là giao điểm của MN và CH
Xét hình chữ nhật CMHN có hai đường chéo MN cắt CH tại Q
Suy ra MN = CH và
Do đó QN = QH
Suy ra tam giác QNH cân tại Q nên
Gọi P là trung điểm của BH
Xét tam giác BHN vuông tại N có NP là đường trung tuyến
Suy ra
Do đó tam giác PHN cân tại P nên
Ta có
Mà , và
Suy ra , hay
Do đó MN ⊥ NP
Xét (P) đường kính BH có MN ⊥ NP và NP là bán kính
Suy ra MN là tiếp tuyến của đường tròn đường kính BH.