Hoặc
a) 4x+24x−4+3−6x6x−6;
a) 4x+24x−4+3−6x6x−6=2(2x+1)4(x−1)+3(1−2x)6(x−1)
=6(2x+1)12(x−1)+6(1−2x)12(x−1)=6(2x+1)+6(1−2x)12(x−1)
=6(2x+1+1−2x)12(x−1)=6 . 212(x−1)
=1212(x−1)=1x−1;