Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ u - 3; 4).
Lời giải:
Cách 1:
Lấy A(0; 5), B(1; 7) thuộc đường thẳng d.
Gọi A', B' tương ứng là ảnh của A, B qua phép tịnh tiến theo vectơ \(\overrightarrow u \left( { - 3;\,4} \right)\).
Khi đó: \(\overrightarrow {AA'} = \overrightarrow u \,\,\)và \(\overrightarrow {BB'} = \overrightarrow u \). Suy ra A'(– 3; 9) và B'(– 2; 11).
Vì đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ \(\overrightarrow u \left( { - 3;\,4} \right)\) nên hai điểm A', B' thuộc đường thẳng d'.
Ta có: \(\overrightarrow {A'B'} = \left( {1;\,2} \right)\), suy ra đường thẳng d' có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2;\, - 1} \right)\).
Phương trình đường thẳng d' là 2(x + 3) – (y – 9) = 0 hay 2x – y + 15 = 0.
Cách 2:
Gọi M(x; y) thuộc đường thẳng d và M'(x'; y') là ảnh của điểm M qua phép tịnh tiến theo vectơ \(\overrightarrow u \left( { - 3;\,4} \right)\). Khi đó \(\overrightarrow {MM'} = \overrightarrow u \)\( \Leftrightarrow \left\{ \begin{array}{l}x' - x = - 3\\y' - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' + 3\\y = y' - 4\end{array} \right.\).
Ta có M thuộc ∆ ⇔ 2x – y + 5 = 0 ⇔ 2(x' + 3) – (y' – 4) + 5 = 0 ⇔ 2x' – y' + 15 = 0. Do đó, M'(x'; y') thuộc đường thẳng có phương trình 2x – y + 15 = 0.
Vì đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ \(\overrightarrow u \left( { - 3;\,4} \right)\) nên M' thuộc đường thẳng d'.
Vậy phương trình đường thẳng d' là 2x – y + 15 = 0.