Câu hỏi:
19/12/2023 78
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo sai?
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo sai?
Trả lời:
Đáp án đúng là: C
+) Mệnh đề đảo của mệnh đề “tam giác ABC cân thì tam giác đó có 2 cạnh bằng nhau” là mệnh đề “tam giác ABC có hai cạnh bằng nhau thì tam giác đó cân”. Đây là mệnh đề đúng.
+) Mệnh đề đảo của mệnh đề “số tự nhiên a chia hết cho 6 thì a chia hết cho 2 và 3” là mệnh đề “số tự nhiên a chia hết cho 2 và 3 thì số tự nhiên a chia hết cho 6”. Đây là mệnh đề đúng vì BCNN(2, 3) = 6.
+) Mệnh đề đảo của mệnh đề “nếu tứ giác ABCD là hình bình hành thì AB song song với CD” là mệnh đề “nếu tứ giác ABCD có AB song song với CD thì tứ giác ABCD là hình bình hành”. Đây là mệnh đề sai vì nếu tứ giác ABCD có AB // CD thì tứ giác ABCD mới là hình thang, cần thêm điều kiện AB = CD nữa thì tứ giác ABCD mới là hình bình hành.
+) Mệnh đề đảo của mệnh đề “nếu tứ giác ABCD là hình chữ nhật thì A=B=C=90” là mệnh đề “nếu tứ giác ABCD có A=B=C=90 thì tứ giác ABCD là hình chữ nhật”. Đây là mệnh đề đúng theo dấu hiệu nhận biết hình chữ nhật.
Vậy trong các mệnh đề đã cho, mệnh đề ở đáp án C có mệnh đề đảo sai.
Đáp án đúng là: C
+) Mệnh đề đảo của mệnh đề “tam giác ABC cân thì tam giác đó có 2 cạnh bằng nhau” là mệnh đề “tam giác ABC có hai cạnh bằng nhau thì tam giác đó cân”. Đây là mệnh đề đúng.
+) Mệnh đề đảo của mệnh đề “số tự nhiên a chia hết cho 6 thì a chia hết cho 2 và 3” là mệnh đề “số tự nhiên a chia hết cho 2 và 3 thì số tự nhiên a chia hết cho 6”. Đây là mệnh đề đúng vì BCNN(2, 3) = 6.
+) Mệnh đề đảo của mệnh đề “nếu tứ giác ABCD là hình bình hành thì AB song song với CD” là mệnh đề “nếu tứ giác ABCD có AB song song với CD thì tứ giác ABCD là hình bình hành”. Đây là mệnh đề sai vì nếu tứ giác ABCD có AB // CD thì tứ giác ABCD mới là hình thang, cần thêm điều kiện AB = CD nữa thì tứ giác ABCD mới là hình bình hành.
+) Mệnh đề đảo của mệnh đề “nếu tứ giác ABCD là hình chữ nhật thì A=B=C=90” là mệnh đề “nếu tứ giác ABCD có A=B=C=90 thì tứ giác ABCD là hình chữ nhật”. Đây là mệnh đề đúng theo dấu hiệu nhận biết hình chữ nhật.
Vậy trong các mệnh đề đã cho, mệnh đề ở đáp án C có mệnh đề đảo sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho định lý sau: “Nếu hai tam giác bằng nhau thì hai tam giác đó đồng dạng”.
Phát biểu định lý trên dưới dạng điều kiện cần.
Cho định lý sau: “Nếu hai tam giác bằng nhau thì hai tam giác đó đồng dạng”.
Phát biểu định lý trên dưới dạng điều kiện cần.
Câu 4:
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Câu 7:
Tam giác ABC có BC = 6, AC = 7, AB = 8. Bán kính đường tròn nội tiếp của tam giác ABC là
Tam giác ABC có BC = 6, AC = 7, AB = 8. Bán kính đường tròn nội tiếp của tam giác ABC là
Câu 8:
Cho tam giác ABC có AB = 4, AC = 8 và . Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Cho tam giác ABC có AB = 4, AC = 8 và . Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu 9:
Cho các mệnh đề dưới đây:
(1) 24 là số nguyên tố.
(2) Phương trình x2 – 5x + 9 = 0 có 2 nghiệm thực phân biệt.
(3) Phương trình x2 + 1 = 0 có 2 nghiệm thực phân biệt.
(4) Mọi số nguyên lẻ đều không chia hết cho 2.
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?
Cho các mệnh đề dưới đây:
(1) 24 là số nguyên tố.
(2) Phương trình x2 – 5x + 9 = 0 có 2 nghiệm thực phân biệt.
(3) Phương trình x2 + 1 = 0 có 2 nghiệm thực phân biệt.
(4) Mọi số nguyên lẻ đều không chia hết cho 2.
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?
Câu 12:
Cặp số nào sau đây là một nghiệm của bất phương trình: 3x + 2(y + 3) > 4(x + 1) – y + 3 ?
Cặp số nào sau đây là một nghiệm của bất phương trình: 3x + 2(y + 3) > 4(x + 1) – y + 3 ?
Câu 13:
Để xác định chiều cao của một tòa tháp mà không cần lên đỉnh của tòa nhà người ta làm như sau: đặt giác kế thẳng đứng cách chân tháp một khoảng AB = 55 m, chiều cao của giác kế là OA = 2 m.
Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh C của tháp. Đọc trên giác kế số đo góc COD=60.
Chiều cao của ngọn tháo gần nhất với giá trị nào sau đây?
Để xác định chiều cao của một tòa tháp mà không cần lên đỉnh của tòa nhà người ta làm như sau: đặt giác kế thẳng đứng cách chân tháp một khoảng AB = 55 m, chiều cao của giác kế là OA = 2 m.
Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh C của tháp. Đọc trên giác kế số đo góc COD=60.
Chiều cao của ngọn tháo gần nhất với giá trị nào sau đây?
Câu 14:
Điểm nào dưới đây thuộc miền nghiệm của bất phương trình 3x + 2y < 10?
Điểm nào dưới đây thuộc miền nghiệm của bất phương trình 3x + 2y < 10?
Câu 15:
Miền nghiệm của hệ bất phương trình là phần màu trắng được biểu diễn trong hình vẽ nào dưới dây ?
Miền nghiệm của hệ bất phương trình là phần màu trắng được biểu diễn trong hình vẽ nào dưới dây ?