Tính giá trị của các biểu thức sau: a) A = sin pi/ 9 - sin 5pi /9 + sin 7pi /9; b) B = sin 6° sin 42° sin 66° sin 78°.

Tính giá trị của các biểu thức sau:

a) \(A = \sin \frac{\pi }{9} - \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\);

b) B = sin 6° sin 42° sin 66° sin 78°.

Trả lời

Lời giải

a) \(A = \sin \frac{\pi }{9} - \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\)

\( = \left( {\sin \frac{\pi }{9} + \sin \frac{{7\pi }}{9}} \right) - \sin \frac{{5\pi }}{9}\)

\( = 2\sin \frac{{\frac{\pi }{9} + \frac{{7\pi }}{9}}}{2}.\cos \frac{{\frac{\pi }{9} - \frac{{7\pi }}{9}}}{2} - \sin \frac{{5\pi }}{9}\)

\( = 2\sin \frac{{4\pi }}{9}.\cos \frac{\pi }{3} - \sin \frac{{5\pi }}{9}\)

\( = \sin \frac{{4\pi }}{9} - \sin \frac{{5\pi }}{9}\)

\( = \sin \left( {\pi - \frac{{4\pi }}{9}} \right) - \sin \frac{{5\pi }}{9}\)

\( = \sin \frac{{5\pi }}{9} - \sin \frac{{5\pi }}{9} = 0\).

Vậy A = 0.

b) Vì sin 78° = cos 12°; sin 66° = cos 24°; sin 42° = cos 48° nên

B = sin 6° cos 12° cos 24° cos 48°.

Nhân hai vế với cos 6° và áp dụng công thức góc nhân đôi, ta được:

cos 6° . B = cos 6° sin 6° cos 12° cos 24° cos 48°

      = \(\frac{1}{2}\sin 12^\circ \) cos 12° cos 24° cos 48°

      = \(\frac{1}{4}\) sin 24° cos 24° cos 48°

      = \(\frac{1}{8}\) sin 48° cos 48°

      = \(\frac{1}{{16}}\)sin 96°

      = \(\frac{1}{{16}}\)sin(90° + 6°) = \(\frac{1}{{16}}\)cos 6°.

Vậy B = \(\frac{1}{{16}}\).