Tính diện tích của một tam giác cân, biết rằng tam giác đó có hai cạnh với độ dài bằng 4 cm và 8 cm.
Lời giải
Vì tam giác cân có hai cạnh là 4 cm và 8 cm nên độ dài cạnh thứ ba của tam giác sẽ là 4 cm hoặc 8 cm.
Mà 4 + 4 = 8 không thỏa mãn bất đẳng thức tam giác nên ta loại trường hợp độ dài ba cạnh là 4 cm, 4 cm, 8 cm.
Do đó, độ dài ba cạnh của tam giác đó là 4 cm, 8 cm, 8 cm.
Giả sử tam giác ABC cân tại A có AB = AC = 8 cm, BC = 4 cm.
Kẻ đường cao AH (H thuộc BC) của tam giác ABC cân tại A. Khi đó, H là trung điểm của BC nên \(BH = \frac{1}{2}BC\)= 2 cm.
Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có:
AH2 + BH2 = AB2
Suy ra AH2 = AB2 – BH2 = 82 – 22 = 60.
Do đó, AH = \(2\sqrt {15} \) cm.
Diện tích tam giác ABC là: \(\frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 2\sqrt {15} \cdot 4 = 4\sqrt {15} \) (cm2).