Tính các giá trị lượng giác (nếu có) của mỗi góc sau: pi/3 + k2pi (k thuộc Z)

Tính các giá trị lượng giác (nếu có) của mỗi góc sau:

\(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\);

Trả lời

Các giá trị lượng giác của góc lượng giác \(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\):

\(cos\left( {\frac{\pi }{3} + k2\pi \,} \right) = cos\frac{\pi }{3} = \frac{1}{2}\);

\(\sin \left( {\frac{\pi }{3} + k2\pi \,} \right) = \sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\);

\(\tan \left( {\frac{\pi }{3} + k2\pi \,} \right) = \tan \frac{\pi }{3} = \sqrt 3 \);

\(\cot \left( {\frac{\pi }{3} + k2\pi \,} \right) = \cot \frac{\pi }{3} = \frac{{\sqrt 3 }}{3}\).

Câu hỏi cùng chủ đề

Xem tất cả