Rút gọn biểu thức: a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x);

Rút gọn biểu thức:

a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x);

Trả lời

a) Ta có M = A + B + C, trong đó:

A = (x – y)(y + z)(z + x)

= (xy + xz ‒ y2 ‒ yz)(z + x)

= xyz + x2y + xz2 + x2z ‒ y2z ‒ xy2 ‒ yz2 ‒ xyz

= (xyz ‒ xyz) + x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2

= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2

B = (x + y)(y – z)(z + x)

= (xy ‒ xz + y2 ‒ yz)(z + x)

= xyz + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2 ‒ xyz

= (xyz ‒ xyz) + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2

= x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2

C = (x + y)(y + z)(z – x)

= (xy + xz + y2 + yz)(z ‒ x)

= xyz ‒ x2y + xz2 ‒ x2z + y2z  ‒ xy2 + yz2 ‒ xyz

= (xyz ‒ xyz) ‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2

= ‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2.

Khi đó: M = A + B + C

= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2 + x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2 ‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2

= (x2y + x2y ‒ x2y) + (‒xy2 + xy2 ‒ xy2) + (xz2 ‒ xz2 + xz2) + (x2z ‒ x2z ‒ x2z) + (–y2z + y2z + y2z) + (‒yz2 ‒ yz2 + yz2)

= x2y ‒ xy2 + xz2 ‒ x2z + y2z ‒ yz2.

Câu hỏi cùng chủ đề

Xem tất cả