Một chất điểm dao động điều hoà. Biết li độ và vận tốc của chất điểm tại thời điểm
10
06/10/2024
Một chất điểm dao động điều hoà. Biết li độ và vận tốc của chất điểm tại thời điểm \({t_1}\) lần lượt là \({x_1} = 3{\rm{\;cm}}\) và \({v_1} = - 60\sqrt 3 {\rm{\;cm}}/{\rm{s}}\); tại thời điểm \({{\rm{t}}_2}\) lần lượt là \({x_2} = 3\sqrt 2 {\rm{\;cm}}\) và \({v_2} = 60\sqrt 2 {\rm{\;cm}}/{\rm{s}}\). Biên độ và tần số góc của dao động lần lượt là:
A. \(6{\rm{\;cm}};20{\rm{rad}}/{\rm{s}}\).
B. \(6{\rm{\;cm}};12{\rm{rad}}/{\rm{s}}\).
C. \(12{\rm{\;cm}};20{\rm{rad}}/{\rm{s}}\).
D. \(12{\rm{\;cm}};10{\rm{rad}}/{\rm{s}}\).
Trả lời
Đáp án đúng là A
Thiết lập và áp dụng công thức: \(\left\{ \begin{array}{l}\frac{{x_1^2}}{{{A^2}}} + \frac{{v_1^2}}{{{\omega ^2}{A^2}}} = 1\\\frac{{x_2^2}}{{{A^2}}} + \frac{{v_2^2}}{{{\omega ^2}{A^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x_1^2{\omega ^2} + v_1^2 = {\omega ^2}{A^2}\\x_2^2{\omega ^2} + v_2^2 = {\omega ^2}{A^2}\end{array} \right.\)
\( \Rightarrow \omega = \sqrt {\frac{{v_2^2 - v_1^2}}{{x_1^2 - x_2^2}}} = \sqrt {\frac{{{{2.60}^2} - {{3.60}^2}}}{{9 - 2.9}}} = 20\,\,{\rm{rad/s}}{\rm{.}}\)
\( \Rightarrow A = \sqrt {x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}}} = \sqrt {{3^2} + \frac{{3 \cdot {{60}^2}}}{{{{20}^2}}}} = 6\;{\rm{cm}}.\)