Giải phương trình: căn (x^2 + x + 1)

Đề bài: Giải phương trình:

x2+x+1+xx2+1=x2x+2

Trả lời

Hướng dẫn giải:

ĐK: x2 + x + 1 ≥ 0 và x – x2 + 1 ≥ 0.

Nên áp dụng bất đẳng thức Cô-si mỗi hạng số vế trái ta được:

(x2+x+1).1x2+x1+12=x2+x2 (1)

(xx2+1).1xx2+1+12=x2+x+22 (2)

Cộng (1) và (2) vế theo vế ta có:

x2+x+1+xx2+1x2+x2+x2+x+22=x+1

Nên theo đề ta có: x2 – x + 2 ≤ x + 1  (x – 1)2 ≤ 0.

Đẳng thức xảy ra khi x – 1 = 0 hay x = 1.

Thử lại ta thấy x = 1 thỏa mãn phương trình.

Vậy phương trình có nghiệm là x = 1.

Câu hỏi cùng chủ đề

Xem tất cả