Cho tứ diện đều ABCD. Chứng minh rằng AB vuông góc CD.
Cho tứ diện đều ABCD. Chứng minh rằng AB ⊥ CD.
Cho tứ diện đều ABCD. Chứng minh rằng AB ⊥ CD.
Gọi a là độ dài cạnh của tứ diện đều ABCD.
Gọi M, N, P lần lượt là trung điểm của các cạnh AC, BC và AD.
Xét tam giác ABC:
M là trung điểm của AC.
N là trung điểm của BC.
Nên MN là đường trung bình của tam giác ABC.
MN // AB; MN = AB = (1)
Tương tự: MP là đường trung bình tam giác ACD:
MP // CD; MP = CD = (2)
Từ (1) và (2) MN = MP =
Tam giác ABD đều có BP là trung tuyến nên BP =
Tam giác ACD đều có CP là trung tuyến nên CP =
Xét tam giác BCP có: BP = CP =
Tam giác BCP cân tại P.
Mà N là trung điểm của BC PN là đường trung tuyến nên PN ⊥ CN
PN =
Xét tam giác MNP:
MP2 + MN2 = ; PN2 =
MP2 + MN2 = PN2
Tam giác MNP vuông tại M.
Ta có: (AB, CD) = (MN, MP) = .
Vậy AB ⊥ CD.