Cho tam giác ABC. Vẽ tia Bx song song AC (sao cho góc xBA và góc BAC là một cặp góc so le trong).

Cho tam giác ABC. Vẽ tia Bx // AC (sao cho xBA^ BAC^ là một cặp góc so le trong).Lấy điểm D Bx và điểm E thuộc tia đối của tia CA sao cho BD = CE. Hai tam giác nào sau đây có cùng trọng tâm?

A. ΔABC và ΔABE;

B. ΔABE và ΔADE;

C. ΔAME và ΔABE;

D. ΔABC và ΔADE.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: D

Cho tam giác ABC. Vẽ tia Bx song song AC (sao cho góc xBA và góc BAC là một cặp góc so le trong). (ảnh 1)

Gọi M là trung điểm của BC. Suy ra MB = MC.

Xét ΔBMD và ΔCME có:

BD = CE (giả thiết);

CBx^=BCE^ (cặp góc so le trong của Bx // AC);

MB = MC

Do đó ΔBMD = ΔCME (c.g.c).

Suy ra MD = ME (hai cạnh tương ứng)BMD^=CME^ (hai góc tương ứng)

Ta có BME^+CME^=180° (kề bù).

Do đó BME^+BMD^=180° suy ra D, M, E thẳng hàng.

Ta có ba điểm D, M, E thẳng hàng và MD = ME nên M là trung điểm của DE.

Khi đó ΔABC và ΔADE chung đỉnh A, chung đường trung tuyến AM nên trọng tâm G của hai tam giác này trùng nhau.

Câu hỏi cùng chủ đề

Xem tất cả