Cho tam giác ABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF

Cho ΔABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF. Gọi G là trọng tâm tam giác ABC. Tia AG cắt BC tại M. Khẳng định nào sau đây là đúng?

A. Hai tam giác ABC và AEF có cùng trọng tâm;

B. Hai tam giác ABC và AEC có cùng trọng tâm;

C. Hai tam giác ABC và ABF có cùng trọng tâm;

D. Hai tam giác AEM và AMF có cùng trọng tâm.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: A

Cho tam giác ABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF (ảnh 1)

Ta có: G là trọng tâm của tam giác ABC nên AG là trung tuyến của tam giác

Mà AG cắt BC tại M nên M là trung điểm của BC

Do đó MB = MC.

Lại có BE = CF (giả thiết)

Nên MB + BE = MC + CF hay ME = MF.

Suy ra AM là đường trung tuyến ứng với cạnh EF của ΔAEF.

Mặt khác AG=23AM (do G là trọng tâm của ΔABC).

Do đó G là trọng tâm của ΔAEF

Mà G là trọng tâm của ΔABC, nên hai tam giác ABC và AEF có cùng trọng tâm là điểm G.

Vậy ta chọn phương án A.

Câu hỏi cùng chủ đề

Xem tất cả