Cho tam giác ABC, điểm M thuộc cạnh BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm

Cho ∆ABC, điểm M thuộc cạnh BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khi đó điểm M là

A. Trọng tâm của ΔABD;

B. Trọng tâm của ΔABC;

C. Trọng tâm của ΔABE;

D. Cách đều ba đỉnh của ΔABD.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: A

Cho tam giác ABC, điểm M thuộc cạnh BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm  (ảnh 1)

Xét ΔABD có AC = CD nên C là trung điểm của AD

Do đó BC là đường trung tuyến của ΔABD.

Mà BM = 2MC nên BM=23BC.

Ta có M nằm trên đường trung tuyến BC và thỏa mãn BM=23BC nên M là trọng tâm của ΔABD.

Câu hỏi cùng chủ đề

Xem tất cả