Cho mặt cầu bán kính R = 5cm.Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8cm. Bốn điểm A, B, C, D thay đổi sao cho

Cho mặt cầu bán kính R = 5cm.Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8πcm. Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc S DC và tam giác ABC đều. Thể tích lớn nhất của tứ diện ABCD bằng

A. 203cm3.

B. 323cm3.

C. 603cm3.

D. 963cm3.

Trả lời

Chọn B

Gọi H là hình chiếu của D trên mặt phẳng (P). Đường tròn ngoại tiếp tam giác đều ABC có chu vi bằng 8πcm.

Suy ra bán kính đường tròn R=8π2π=4cm.

Suy ra cạnh của tam giác ABC bằng 43cm

Suy ra SΔABC=43234=123cm2 không đổi 

Do đó thể tích khối tứ diện ABCD lớn nhất khi dD,ABC lớn nhất <=> D và O nằm cùng phía SO với mặt phẳng (P) và D, O, H thẳng hàng

DH=DO+OH=DO+OA2AH2=5+2516=8.

Khi đó Vmax=13.123.8=323cm3.

Câu hỏi cùng chủ đề

Xem tất cả