Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB
1.1k
08/11/2023
Bài 10 trang 121 Toán 8 Tập 1:Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB. Chứng minh tứ giác MNPQ là hình vuông.
Trả lời
• Do ABCD là hình vuông nên AB = BC = CD = DA.
Mà AM = BN = CP = DQ
Suy ra AB – AM = BC – BN = CD – CP = DA – DQ
Hay MB = NC = PD = QA
• Xét ΔAMQ và ΔBNM có:
;
AM = BN (giả thiết);
QA = MB (chứng minh trên)
Do đó ΔAMQ = ΔBNM (hai cạnh góc vuông)
Suy ra QM = MN (hai cạnh tương ứng).
Chứng minh tương tự ta có: MN = NP và NP = PQ.
Khi đó MN = NP = PQ = QM.
• Tứ giác MNPQ có 4 cạnh bằng nhau nên là hình thoi.
• Do ΔAMQ = ΔBNM (chứng minh trên) nên (hai góc tương ứng)
Mà (do ΔBMN vuông tại B)
Suy ra
Lại có
Suy ra .
• Hình thoi MNPQ có nên là hình vuông.
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
Bài 3: Hình thang cân
Bài 4: Hình bình hành