Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD (H.3.8). Trong các khẳng định sau, khẳng định sai là A. BC = AD. B. ABCD là hình thang cân.

Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD (H.3.8).

Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD (H.3.8).   Trong các khẳng định sau, khẳng định sai là A. BC = AD. B. ABCD là hình thang cân. C. AC = BD. D. Tam giác AOC cân tại O. (ảnh 1)

Trong các khẳng định sau, khẳng định sai

A. BC = AD.

B. ABCD là hình thang cân.

C. AC = BD.

D. Tam giác AOC cân tại O.

Trả lời

Đáp án đúng là: D

Ta có: OA = OB; OC = OD suy ra OA + OC = OB + OD

Khi đó AC = BD nên ABCD là hình thang cân. Do đó B, C đúng.

ABCD là hình thang cân nên hai cạnh bên bằng nhau nên BD = AC. Do đó A đúng.

Vì A, O, C thẳng hàng nên D là khẳng định sai.

Câu hỏi cùng chủ đề

Xem tất cả