Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. a) Tính côsin của góc giữa hai mặt phẳng
1.7k
20/11/2023
Bài 7.23 trang 34 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Tính côsin của góc giữa hai mặt phẳng (A'BD) và (ABCD).
b) Tính côsin của số đo góc nhị diện [A', BD, C'].
Trả lời
a) Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC, BD.
Vì ABCD là hình vuông nên AO BD.
Xét tam giác A'AB vuông tại A, nên A'B = .
Xét tam giác A'AD vuông tại A, nên A'D = .
Xét tam giác A'BD có A'D = A'B nên tam giác A'BD là tam giác cân mà A'O là trung tuyến nên A'O đồng thời là đường cao. Do đó A'O BD.
Khi đó góc giữa hai mặt phẳng (A'BD) và (ABCD) bằng góc giữa đường thẳng AO và A'O mà (AO,A'O) = .
Xét tam giác ADC vuông tại D, có AC = .
Vì O là trung điểm của AC nên AO = ;
Xét tam giác A'AO vuông tại A, có OA' = .
Xét tam giác AA'O vuông tại A, có cos.
Vậy côsin của góc giữa hai mặt phẳng (A'BD) và (ABCD) bằng .
b) Xét tam giác BCC' vuông tại C có: C'B = .
Xét tam giác C'CD vuông tại C có: C'D = .
Xét tam giác C'BD có C'B = C'D nên tam giác C'BD cân tại C' mà C'O là trung tuyến nên C'O đồng thời là đường cao hay C'O BD.
Vì A'O BD, C'O BD nên góc nhị diện [A', BD, C'] bằng .
Ta có OA' = C'O = ; A'C' = a.
Áp dụng định lí côsin cho tam giác A'OC' ta được:
cos.
Vậy côsin của số đo góc nhị diện [A', BD, C'] bằng .
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 23: Đường thẳng vuông góc với mặt phẳng
Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
Bài 25: Hai mặt phẳng vuông góc
Bài 26: Khoảng cách
Bài 27: Thể tích
Bài tập cuối chương 7