Cho hàm số f(x) = x^2 - x nếu x > = 1; x + a nếu x < 1 Tìm a để hàm số liên tục
17
04/08/2024
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x\,\,\,\,n\^e 'u\,\,x \ge 1\\x + a\,\,\,\,\,\,\,n\^e 'u\,\,x < 1\end{array} \right.\).
Tìm a để hàm số liên tục trên ℝ.
Trả lời
Với x < 1 thì f(x) = x + a liên tục trên (−∞; 1).
Với x > 1 thì f(x) = x2 – x liên tục trên (1; +∞).
Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 1.
Khi đó \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right) = 0\).
Như vậy, \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + a} \right) = 1 + a = 0 \Rightarrow a = - 1\).
Vậy hàm số đã cho liên tục trên ℝ khi a = −1.