Cho hàm số f( x ) = x^4 - 2x^3 + m (m) là tham số thực). Tìm tổng tất cả các giá trị của m sao cho max [ 0;1]| f( x )| + 2 min [ 0;1] | f( x ) | = 10 A. 4 B. - 3 C. 1 D. 2
Lời giải
Chọn C
Ta xét \(f\left( x \right) = {x^4} - 2{x^3} + m\) liên tục trên đoạn \(\left[ {0;1} \right]\), \(f'\left( x \right) = 4{x^3} - 6{x^2}\).
\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \in \left[ {0;1} \right]}\\{x = \frac{3}{2} \notin \left[ {0;1} \right]}\end{array}} \right.\).
\(f\left( 0 \right) = m;f\left( 1 \right) = m - 1\).
Ta xét các trường hợp sau:
-Nếu \(m \le 0\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = - m\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow \left( {1 - m} \right) + 2\left( { - m} \right) = 10 \Leftrightarrow m = - 3\) (thỏa điều kiện).
-Nếu \(m \ge 1\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m - 1\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow m + 2\left( {m - 1} \right) = 10 \Leftrightarrow m = 4\) (thỏa điều kiện).
-Nếu \(\frac{1}{2} \le m < 1\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow m = 10\) (không thỏa điều kiện).
-Nếu \(0 < m < \frac{1}{2}\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow 1 - m = 10 \Leftrightarrow m = - 9\) (không thỏa điều kiện).
Do đó có hai giá trị \(m = - 3\) và \(m = 4\) thỏa mãn yêu cầu bài toán.
Vậy tổng tất cả các giá trị của \(m\) sao cho \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10\) là \(1\).