Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho veto EF không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.

Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho \(\overrightarrow {EF} \) không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.

Trả lời

Lời giải:

Media VietJack

Ta có: \(\left| {\overrightarrow {EF} } \right| = m\) (m > 0) không đổi.

Đặt \(\overrightarrow u = \overrightarrow {EF} \) \(\left( {\overrightarrow u \ne \overrightarrow 0 } \right)\), \(\overrightarrow u \) không đổi, khi đó \(\left| {\overrightarrow u } \right| = m\) không đổi.

Gọi G là ảnh của điểm B qua phép tịnh tiến theo vectơ \( - \overrightarrow u \). Khi đó \(\overrightarrow {BG} = - \overrightarrow u \). Vì B cố định và \(\overrightarrow u \) không đổi nên G cố định. Gọi G' là ảnh của G qua phép đối xứng trục d thì G' cố định.

Gọi giao điểm của AG' và đường thẳng d là E, trên d lấy điểm F thỏa mãn EF = m và \(\overrightarrow {EF} = \overrightarrow u = - \overrightarrow {BG} \) hay \(\overrightarrow {EF} = \overrightarrow {GB} \). Khi đó BGEF là hình bình hành nên BF = GE.

Mà G và G' đối xứng nhau qua d nên GE = G'E. Do đó BF = GE = G'E.

Ta có: AE + BF = AE + G'E = AG' (1).

Ta có E và F như trên là hai điểm cần tìm để AE + BF nhỏ nhất.

Thật vậy, gọi E' và F' là 2 điểm trên d, khác E và F sao cho \(\overrightarrow {E'F'} = \overrightarrow u \) và \(\left| {\overrightarrow {E'F'} } \right| = \left| {\overrightarrow u } \right| = m\).

Ta có: AE' + BF' = AE' + GE' = AE' + G'E' > AG' (2) (bất đẳng thức trong tam giác AG'E').

Từ (1) và (2) suy ra AE + BF < AE' + BF'. Từ đó suy ra điều phải chứng minh.

Câu hỏi cùng chủ đề

Xem tất cả