Cho đa thức F = ax^2y + 2xy – x – 3x^2y + y – 1, trong đó x và y là hai biến, a là một số cho
23
09/08/2024
Cho đa thức F = ax2y + 2xy – x – 3x2y + y – 1, trong đó x và y là hai biến, a là một số cho trước nào đó. Tìm điều kiện của a để bậc của đa thức F
a) bằng 3.
Trả lời
Trước hết ta viết đa thức đã cho dưới dạng: F = (a – 3)x2y + 2xy – x + y – 1.
a) Nếu a ≠ 3 thì F có dạng thu gọn là (a – 3)x2y + 2xy – x + y – 1, trong đó hạng tử có bậc cao nhất là (a – 3)x2y, bậc 3. Do đó điều kiện để bậc của F bằng 3 là a ≠ 3.