Hướng dẫn giải
Đáp án đúng là: C
• Ta xét (I):
Xét ∆ABC có AD, BE, CF là ba đường trung tuyến cắt nhau tại G nên G là trọng tâm của ∆ABC, do đó và
∆GBC có GB + GC > BC (bất đẳng thức tam giác).
Suy ra
Hay
Do đó (1).
Chứng minh tương tự ta được:
⦁ (2).
⦁ (3).
Lấy (1) + (2) + (3) vế theo vế, ta được:
Suy ra
Do đó
Vậy (I) đúng.
• Ta xét (II):
Trên tia AD, lấy điểm A’ sao cho DA’ = DA.
Xét ∆ADB và ∆A’DC, có:
DA = DA’ (theo cách dựng);
(hai góc đối đỉnh);
BD = CD (do AD là đường trung tuyến của ∆ABC)
Do đó ∆ADB = ∆A’DC (c.g.c).
Suy ra AB = A’C (hai cạnh tương ứng).
Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được: AA’ < AC + A’C.
Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).
Chứng minh tương tự, ta được:
⦁ 2BE < AB + BC (5).
⦁ 2CF < AC + BC (6).
Lấy (4) + (5) + (6) vế theo vế, ta được:
2AD + 2BE + 2CF < 2AC + 2AB + 2BC.
Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).
Do đó AD + BE + CF < AB + AC + BC.
Vậy (II) đúng.
Kết luận: cả (I) và (II) đều đúng.
Ta chọn phương án C.