Bạn Minh muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90cm. Bạn muốn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với

Bạn Minh muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều \[ABC\] có cạnh bằng \[90{\rm{ }}\left( {{\rm{cm}}} \right)\]. Bạn muốn cắt mảnh tôn hình chữ nhật \[MNPQ\] từ mảnh tôn nguyên liệu (với \[M\], \[N\] thuộc cạnh \[BC\]; \[P\], \[Q\] tương ứng thuộc cạnh \[AC\]\[AB\]) để tạo thành hình trụ có chiều cao bằng \[MQ\]. Thể tích lớn nhất của chiếc thùng mà bạn Minh có thể làm được là
A. \(\frac{{91125}}{{4\pi }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
B. \(\frac{{91125}}{{2\pi }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
C. \[\frac{{13500.\sqrt 3 }}{\pi }\left( {{\rm{c}}{{\rm{m}}^3}} \right)\]
D. \(\frac{{108000\sqrt 3 }}{\pi }\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

Trả lời

Lời giải

Chọn C

Media VietJack

Gọi \[I\] là trung điểm \[BC\]. Suy ra \[I\] là trung điểm \[MN\]. Đặt \[MN = x\], \[\left( {0 < x < 90} \right)\].

Ta có: \(\frac{{MQ}}{{AI}} = \frac{{BM}}{{BI}}\)\( \Leftrightarrow MQ = \frac{{\sqrt 3 }}{2}\left( {90 - x} \right)\); gọi \(R\) là bán kính của trụ \( \Rightarrow R = \frac{x}{{2\pi }}\).

Thể tích của khối trụ là: \({V_T} = \pi {\left( {\frac{x}{{2\pi }}} \right)^2}\frac{{\sqrt 3 }}{2}\left( {90 - x} \right) = \frac{{\sqrt 3 }}{{8\pi }}\left( { - {x^3} + 90{x^2}} \right)\)

Xét \(f\left( x \right) = \frac{{\sqrt 3 }}{{8\pi }}\left( { - {x^3} + 90{x^2}} \right)\) với \(0 < x < 90\), \(f'\left( x \right) = \frac{{\sqrt 3 }}{{8\pi }}\left( { - 3{x^2} + 180x} \right)\), \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 60}\end{array}} \right.\).

Media VietJack

Khi đó suy ra \[\mathop {\max }\limits_{x \in (0;90)} f\left( x \right) = f\left( {60} \right) = \frac{{13500.\sqrt 3 }}{\pi }\].

Câu hỏi cùng chủ đề

Xem tất cả