b) (2x + y)(2y + z)(2z + x) – (2x – y)(2y – z)(2z – x).
b) (2x + y)(2y + z)(2z + x) – (2x – y)(2y – z)(2z – x).
b) (2x + y)(2y + z)(2z + x) – (2x – y)(2y – z)(2z – x).
b) Ta có N = P ‒ Q, trong đó:
P = (2x + y)(2y + z)(2z + x)
= (4xy + 2xz + 2y2 + yz)(2z + x)
= 8xyz + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2 + xyz
= (8xyz + xyz) + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2
= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2 + 2x2z.
Q = (2x – y)(2y – z)(2z – x)
= (4xy ‒ 2xz ‒ 2y2 + yz)(2z ‒ x)
= 8xyz ‒ 4x2y ‒ 4xz2 + 2x2z – 4y2z + 2xy2 + 2yz2 ‒ xyz
= (8xyz ‒ xyz) ‒ 4x2y ‒ 4xz2 + 2x2z – 4y2z + 2xy2 + 2yz2
= 7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z.
Từ đó: N = P – Q
= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2 + 2x2z ‒ (7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z)
= 9xyz + 4x2y + 4xz2 + 4y2z + 2xy2 + 2yz2 + 2x2z ‒ 7xyz + 4x2y + 4xz2 + 4y2z ‒ 2xy2 ‒ 2yz2 ‒ 2x2z
= (9xyz ‒ 7xyz) + (4x2y + 4x2y) + (4y2z + 4y2z) + (4xz2 + 4xz2) + (2xy2 ‒ 2xy2) + (2xy2 ‒ 2yz2) + (2x2z ‒ 2x2z)
= 2xyz + 8x2y + 8y2z + 8xz2..